Мощность и электрическая энергия
Электрическая энергия — это потенциальная работа, которую сможет совершить электрический заряд в электромагнитном поле. На некоторое время электрическую энергию можно сохранить в конденсаторе, в катушке с током, можно даже в колебательном контуре. И в конце концов электрическая энергия может быть преобразована в механическую или в тепловую энергию, в энергию разряда, свечения и т. д.
Вообще, произнося словосочетание «электрическая энергия», можно иметь ввиду заряд конденсатора или аккумулятора, а можно — количество намотанных счетчиком киловатт-часов. В любом случае, речь всегда идет об измерении некого количества работы, уже совершенной электричеством, или той, которая еще только будет совершена. Так или иначе, электрическая энергия — это всегда энергия электрического заряда.
Если электрический заряд покоится (или движется по эквипотенциальной траектории), находясь в электрическом поле, то речь идет о потенциальной энергии A, которая зависит от количества заряда Q (измеряется в кулонах) и от разности потенциалов U в поле, между той точкой, где заряд находится в начальный момент, и той точкой, относительно которой вычисляется энергия данного заряда.
Потенциальная электрическая энергия связана с положением заряда в электрическом поле. Например 1 кулон заряда (6,24 квинтиллионов электронов) при разности потенциалов (напряжении) в 12 вольт обладает энергией в 12 джоуль. Это значит, что при перемещении в данных условиях всего этого заряда из точки с потенциалом 12 вольт в точку с потенциалом 0 вольт, электрическое поле совершит работу A, равную 12 Дж. Когда заряд движется, то речь идет о кинетической энергии носителя заряда или об энергии электрического тока.
Когда заряд движется под действием электрического поля, от точки с более высоким потенциалом — в сторону потенциала более низкого, электрическое поле совершает работу, потенциальная энергия заряда уменьшается, преобразуясь в энергию магнитного поля движущегося заряда и в кинетическую энергию движущегося носителя заряда.
Если, например, заряженные частицы движутся под действием сторонних сил (допустим, ЭДС создается аккумулятором) внутри вольфрамовой спирали, то они преодолевают сопротивление вещества спирали, взаимодействуют с атомами вольфрама, сталкиваются с ними, раскачивают их, при этом спираль нагревается, выделяется тепло и излучается свет. Врезаясь в вещество спирали, заряженные частицы теряют свою кинетическую энергию, энергия частиц, движущихся под действием сторонних сил, преобразуется теперь в тепловую энергию колебаний кристаллической решетки спирали и в энергию электромагнитных волн света.
Когда мы говорим об электрической мощности, то имеем ввиду скорость преобразования электрической энергии. Например, скорость преобразования энергии электростанции при питании лампы накаливания мощностью 100 ватт, равна 100 Дж/с — 100 джоуль энергии в секунду — есть 100 ватт. Обычно для нахождения мощности перемножают ток I и напряжение U. Так делают потому, что ток I — это количество заряда Q, прошедшее через потребитель за время t, равное одной секунде. Напряжение — разность это та самая разность потенциалов, которую преодолел заряд. Вот и получается, что мощность W=Q*U/t=Q*U/1=I*U.
Номинальная мощность источника питания обычно ограничена напряжением на его клеммах и током, который способен данный источник обеспечить в номинальном режиме. Мощность потребителя — это скорость потребления электроэнергии при номинальном напряжении, приложенных к выводам потребителя.
Диафильм фабрики экранных учебно-наглядных пособий «Энергия и мощность электрического тока»:
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Электроэнергия и мощность в чем разница простыми словами
Оптимальные
Инженерные решения
в Электроэнергетике
Будьте в курсе новостей
Текущее время
Основные темы
Что такое Киловатт-час, кВт/ч, кВт*ч, примеры расчета потребления электрооборудования
Что такое Киловатт-час, кВт/ч, кВт*ч
кВт/ч, кВт*ч, Киловатт-час — внесистемная единица измерения количества произведенной или потреблённой энергии, а также выполненной работы. Используется для упрощения расчетов за электроэнергию.
Киловатт-час равен количеству энергии, потребляемой (производимой) устройством мощностью один киловатт в течение одного часа. Отсюда 1 кВт*ч = 1000 Вт * 3600 с = 3,6 МДж.
Следует заметить, что правильно писать именно «кВт*ч» (мощность, умноженная на время). Написание «кВт/ч» (киловатт в час) — неправильно. Такое обозначение соответствует изменению мощности в единицу времени (что обычно никого не интересует), но никак не количеству энергии. Столь же распространенная ошибка — использовать «киловатт» (единицу мощности) вместо «киловатт-час».
Пример расчета потребления некоторых бытовых приборов:
Наименование электроприбора | Паспортная мощность, Вт (Ватт, W) | Время работы, ч | Потребленное количество электрической энергии за указанное время, кВт*ч |
Электрочайник | 2200 | 0,1 | 0,22 |
Бойлер | 3500 | 2 | 7 |
Зарядка для телефона | 100 | 8 | 0,8 |
LED телевизор | 130 | 5 | 0,65 |
Стиральная машинка | 1800 | 1,1 | 1,98 |
Лампа накаливания (60W) | 60 | 1000 | 60 |
Энергосберегающая лампа (Эквивалентная 60W) | 12 | 1000 | 12 |
Диодная лампа (Эквивалентная 60W) | 6 | 1000 | 6 |
В чем разница кВт и кВа ?
Вольт-ампер (ва) — это единица полной мощности переменного тока, обозначается ВА или VA. Полная мощность переменного тока определяется как произведение действующих значений тока в цепи (в амперах) и напряжения на её зажимах (в вольтах).
Ватт (вт) — единица мощности. Названа в честь шотландско-ирландского изобретателя-механика Джеймса Уатта, обозначается вт или W. Ватт -это мощность, при которой за 1 сек совершается работа, равная 1 джоулю. Ватт как единица электрической (активной) мощности равен мощности не изменяющегося электрического тока силой 1 ампер при напряжении 1 вольт.
При выборе стабилизатора или электростанции следует помнить, что кВА — это полная потребляемая мощность, а кВт — это активная (затраченная на совершение полезной работы) мощность. Полная мощность – это сумма реактивной и активной мощностей. Зачастую разные потребители имеют разное соотношение полной и активной мощности. Поэтому для определения суммарной мощности всех потребителей необходимо сложение полных мощностей оборудования, а не активных мощностей.
Номинальная мощность
В электротехнической промышленности принято мощность большинства потребителей определять в Ваттах. Это так называемая активная мощность – мощность, выделяющаяся на чисто резистивной нагрузке(Нагреватели,телевизоры,лампочки и т.п.). Активная мощность целиком идет на полезную работу (нагрев, механическое движение), и обычно именно ее понимают под потребляемой мощностью.Если потребитель активный (чайник, лампа накаливания, ТЭН), то другой информации о нем не требуется, на таких потребителях пишут (как правило) номинальную мощность в Вт, номинальное напряжение и все. Здесь нет вопросов о косинусе «фи», т.к. этот «фи» (угол между током и напряжением данных потребителей) равен нулю, косинус нуля равен 1, — отсюда, Активная мощность («P») равна произведению тока через потребитель и напряжению на потребителе, умноженному на этот пресловутый косинус «фи», т.е. P = I*U*Сos (fi) = P = I*U*1 = P=I*U.
Простой пример для тена с cos фи=1:
Полная мощность S=10 кВА cos фи=1
Тогда активная мощность P=10*1=10 кВт
У потребителей, имеющих в своем составе не только активное сопротивление, но и любое реактивное (индуктивность, емкость), принято писать на шильдике величину «P» в Ваттах, а так же указывать величину косинуса «фи». Величина косинуса «фи» определяется параметрами самих этих потребителей, а точнее — соотношением их активных и реактивных сопротивлений.
Например, обычный электродвигатель имеет на бирке: P=5кВт, Сos(fi)=0.8. Это значит следующее: Данный двигатель при работе (в номинальном режиме) потребляет полную Полную мощность (сумму активной и реактивной мощностей). Активную мощность «S» равную P/Cos(fi)=5/0,8= 6,25 кВа и Реактивную мощность «Q» в размере U*I/Sin(fi).
Для нахождения номинального тока двигателя нужно его Полную мощность «S» и разделить на рабочее напряжение (220), впрочем, ток указывается, как правило, на шильдике. Может появиться вопрос, почему же на генераторах (трансформаторах, стабилизаторах напряжения) указывается мощность в ВА (вольт-амперах)? А как ее еще указать? Допустим, что на стабилизаторе напряжения указана мощность 10000 Ва. Это должно значить, что, если я подцеплю кучу ТЭНов к данному трансформатору, то мощность, отдаваемая трансформатором в ТЭНы (в номинальном режиме работы трансформатора) не может превышать 10000 Вт. Вроде все сходится. А если я захочу нагрузить стабилизатор напряжения катушкой индуктивности или электродвигателем с Сos(fi)=0.8? (кучей катушек)? И данный стабилизатор будет отдавать мощность уже 8000 Вт?а при Сos(fi)=0.85 -8500 Вт. Тогда надпись на шильдике 10000 Ва будет уже не правомерной. Поэтому, мощность генераторов (трансформаторов и стабилизаторов напряжения) может определяться только в Полной мощности (в нашем случае 1000 кВА), а как ты ее (Полную мощность) будешь использовать — твое дело.
[i]Теперь можно перейти к подбору
стабилизатора напряжения, электростанции,
источника бесперебойного питания, инвертора.[/i]
Коэффициент мощности, косинус «фи»
Это отношение средней мощности переменного тока к произведению действующих значений напряжения и тока. Наибольшее значение коэффициента мощности равно 1. В случае синусоидального переменного тока, коэффициент мощности равен косинусу угла сдвига фаз между синусоидами напряжения и тока и определяется параметрами цепи: Сos ф = r/Z, где ф («фи») — угол сдвига фаз, r — активное сопротивление цепи, Z — полное сопротивление цепи. Коэффициент мощности может отличаться от 1 и в цепях с чисто активными сопротивлениями, если в них содержатся нелинейные участки. В этом случае коэффициент мощности уменьшается вследствие искажения формы кривых напряжения и тока.
Коэффициент мощности электрической цепи — это косинус фазового угла между основаниями кривых напряжения и тока. Согласно другому определению, коэффициент мощности — это соотношение активной и полной энергий. Коэффициент мощности (Сos φ = Активная мощность/Полная мощность = P/S (Вт/ВА), потребляемых нагрузкой.
Коэффициент мощности — комплексный показатель, характеризующий линейные и нелинейные искажения, вносимые нагрузкой в электросеть.
Типовые значения коэффициента мощности:
— 1.00 — идеальное значение;
— 0.95 — хороший показатель;
— 0.90 — удовлетворительный показатель;
— 0.80 — средний показатель современных электродвигателей;
— 0.70 — низкий показатель;
— 0.60 — плохой показатель.
Что такое активная и реактивная электроэнергия?
Расчет электрической энергии, используемой бытовым или промышленным электротехническим прибором, производится обычно с учетом полной мощности электрического тока, проходящего через измеряемую электрическую цепь.
При этом выделяются два показателя, отражающие затраты полной мощности при обслуживании потребителя. Эти показатели называются активная и реактивная энергия. Полная мощность представляет собой сумму этих двух показателей.
Полная мощность.
По сложившейся практике потребители оплачивают не полезную мощность, которая непосредственно используется в хозяйстве, а полную, которую отпускает предприятие-поставщик. Различают эти показатели по единицам измерения – полная мощность измеряется в вольт-амперах (ВА), а полезная – в киловаттах. Активная и реактивная электроэнергия используется всеми запитанными от сети электроприборами.
Активная электроэнергия.
Активная составляющая полной мощности совершает полезную работу и преобразовывается в те виды энергии, которые нужны потребителю. У части бытовых и промышленных электроприборов в расчетах активная и полная мощность совпадают. Среди таких устройств – электроплиты, лампы накаливания, электропечи, обогреватели, утюги и гладильные прессы и прочее. Если в паспорте указана активная мощность 1 кВт, то полная мощность такого прибора будет составлять 1 кВА.
Понятие реактивной электроэнергии.
Этот вид электроэнергии присущ цепям, в составе которых имеются реактивные элементы. Реактивная электроэнергия — это часть полной поступаемой мощности, которая не расходуется на полезную работу. В электроцепях постоянного тока понятие реактивной мощности отсутствует. В цепях переменного тока реактивная составляющая возникает только в том случае, когда присутствует индуктивная или емкостная нагрузка. В таком случае наблюдается несоответствие фазы тока с фазой напряжения. Данный сдвиг фаз между напряжением и током обозначается символом «φ». При индуктивной нагрузке в цепи наблюдается отставание фазы, при емкостной – ее опережение. Поэтому потребителю приходит только часть полной мощности, а основные потери происходят из-за бесполезного нагревания устройств и приборов в процессе эксплуатации. Потери мощности происходят из-за наличия в электрических устройствах индуктивных катушек и конденсаторов. Из-за них в цепи в течение некоторого времени происходит накопление электроэнергии. После этого запасенная энергия поступает обратно в цепь. К приборам, в составе потребляемой мощности которых имеется реактивная составляющая электроэнергии, относятся переносные электроинструменты, электродвигатели и различная бытовая техника. Эта величина рассчитывается с учетом особого коэффициента мощности, который обозначается как cos φ.
Расчет реактивной электроэнергии.
Коэффициент мощности лежит в пределах от 0,5 до 0,9; точное значение этого параметра можно узнать из паспорта электроприбора. Полная мощность должна быть определена как частное от деления активной мощности на коэффициент. Например, если в паспорте электрической дрели указана мощность в 600 Вт и значение 0,6, тогда потребляемая устройством полная мощность будет равна 600/06, то есть 1000 ВА. При отсутствии паспортов для вычисления полной мощности прибора коэффициент можно брать равным 0,7. Поскольку одной из основных задач действующих систем электроснабжения является доставка полезной мощности конечному потребителю, реактивные потери электроэнергии считаются негативным фактором, и возрастание этого показателя ставит под сомнение эффективность электроцепи в целом.
Значение коэффициента при учете потерь.
Чем выше значение коэффициента мощности, тем меньше будут потери активной электроэнергии – а значит конечному потребителю потребляемая электрическая энергия обойдется немного дешевле. Для того чтобы повысить значение этого коэффициента, в электротехнике используются различные приемы компенсации нецелевых потерь электроэнергии. Компенсирующие устройства представляют собой генераторы опережающего тока, сглаживающие угол сдвига фаз между током и напряжением. Для этой же цели иногда используются батареи конденсаторов. Они подключаются параллельно к рабочей цепи и используются как синхронные компенсаторы.
Расчет стоимости электроэнергии для частных клиентов.
Для индивидуального пользования активная и реактивная электроэнергия в счетах не разделяется – в масштабах потребления доля реактивной энергии невелика. Поэтому частные клиенты при потреблении мощности до 63 А оплачивают один счет, в котором вся потребляемая электроэнергия считается активной. Дополнительные потери в цепи на реактивную электроэнергию отдельно не выделяются и не оплачиваются. Учет реактивной электроэнергии для предприятий Другое дело – предприятия и организации. В производственных помещениях и промышленных цехах установлено огромное число электрооборудования, и в общей поступаемой электроэнергии имеется значительная часть энергии реактивной, которая необходима для работы блоков питания и электродвигателей. Активная и реактивная электроэнергия, поставляемая предприятиям и организациям, нуждается в четком разделении и ином способе оплаты за нее. Основанием для регуляции отношений предприятия-поставщика электроэнергии и конечных потребителей в этом случае выступает типовой договор. Согласно правилам, установленным в этом документе, организации, потребляющие электроэнергию свыше 63 А, нуждаются в особом устройстве, предоставляющем показания реактивной энергии для учета и оплаты. Сетевое предприятие устанавливает счетчик реактивной электроэнергии и начисляет оплату согласно его показаниям.
Коэффициент реактивной энергии.
Как говорилось ранее, активная и реактивная электроэнергия в счетах на оплату выделяются отдельными строками. Если соотношение объемов реактивной и потребленной электроэнергии не превышает установленной нормы, то плата за реактивную энергию не начисляется. Коэффициент соотношения бывает прописан по-разному, его среднее значение составляет 0,15. При превышении данного порогового значения предприятию-потребителю рекомендуют установить компенсаторные устройства.
Реактивная энергия в многоквартирных домах.
Типичным потребителем электроэнергии является многоквартирный дом с главным предохранителем, потребляющий электроэнергию свыше 63 А. Если в таком доме имеются исключительно жилые помещения, плата за реактивную электроэнергию не взимается. Таким образом, жильцы многоквартирного дома видят в начислениях оплату только за полную электроэнергию, поставленную в дом предприятием-поставщиком. Та же норма касается жилищных кооперативов.
Частные случаи учета реактивной мощности.
Бывают случаи, когда в многоэтажном здании имеются и коммерческие организации, и квартиры. Поставка электроэнергии в такие дома регулируется отдельными Актами. Например, разделением могут служить размеры полезной площади. Если в многоквартирном доме коммерческие организации занимают менее половины полезной площади, то оплата за реактивную энергию не начисляется. Если пороговый процент был превышен, то возникают обязательства оплаты за реактивную электроэнергию. В ряде случаев жилые дома не освобождаются от оплаты за реактивную энергию. Например, если в доме установлены пункты подключения лифтов для квартир, начисление за использование реактивной электроэнергии происходит отдельно, лишь для этого оборудования. Владельцы квартир по-прежнему оплачивают лишь активную электроэнергию.