Эффект памяти у аккумуляторов что это
Перейти к содержимому

Эффект памяти у аккумуляторов что это

  • автор:

Эффект памяти аккумуляторов

Эффект памяти аккумуляторов на основе никеля известен давно. И если раньше под ним понимали своего рода запоминание аккумулятором того состояния, в котором он был перед последующей зарядкой, то сейчас толкование этого термина другое. Внешнее проявление эффекта заключается в уменьшении реальной емкости аккумулятора в процессе эксплуатации.

Количество энергии, которое аккумулятор способен удерживать (реальная емкость), постепенно уменьшается в процессе эксплуатации и старения, а также из–за недостаточного обслуживания для аккумуляторов некоторых электрохимических систем. Аккумулятор, в конечном счете, должен быть заменен, когда его емкость падает до 60–70 % от номинальной величины. Индивидуальные российские пользователи, как правило, умудряются эксплуатировать аккумуляторы до тех пор, пока их емкость не упадет до 20–30% от номинального значения. Значение емкости в 80% обычно принимается за нижнее допустимое значение для нового аккумулятора. Фирменные (именные) новые аккумуляторы, как правило, имеют реальную емкость близкую к 90%, аккумуляторы сторонних производителей – часто около 70%.

NiCD и в меньшей степени NiMH аккумуляторы подвержены воздействию эффекта памяти. В настоящий момент под эффектом памяти понимается обратимая потеря ёмкости, вызванная укрупнением кристаллических образований активного вещества аккумулятора и тем самым уменьшением площади активной поверхности его рабочего вещества.

Суть явления такова, что при мелких кристаллических образованьях внутреннего рабочего вещества аккумулятора – площадь поверхности кристаллических образований максимальна, а, следовательно, и максимально количество энергии, запасаемой аккумулятором. При укрупнении кристаллических образований в процессе эксплуатации – площадь их поверхности уменьшается и, как следствие, уменьшается реальная емкость.

Можно ли эти укрупненные образования «раздробить» и привести к первоначальному состоянию? Да, можно, если процесс их укрупнения не зашел слишком далеко. Для этого необходимо периодически проводить тренировку аккумуляторов на основе никеля: NiCD – примерно раз в месяц, NiMH – раз в два месяца. Под тренировкой в данном случае понимается полный разряд аккумулятора до напряжения 1 вольт на элемент (если у Вас, например, аккумулятор с номинальным напряжением 6V, т.е. 5 элементов в аккумуляторе, то его необходимо разряжать до 5V) и последующий полный заряд. Для восстановления емкости аккумулятора может потребоваться до 3–5 таких циклов разряда/заряда. Разряд аккумулятора непосредственно в телефоне, как правило, до такого напряжения не происходит – телефон отключается при более высоком напряжении. Лучший эффект достигается в некоторых зарядных устройствах с функцией разряда.

Однако следует отметить, что некоторые из восстановленных аккумуляторов могут иметь высокий саморазряд вследствие повреждения кристаллическими образованьями материала сепаратора. Эта обычно свойственно старым аккумуляторам.

Что же в конечном счете можно посоветовать рядовому потребителю, эксплуатирующему NiCD или NiMH аккумуляторы? Старайтесь эксплуатировать их в режиме: зарядил, использовал до конца, и только затем вновь на зарядку.

Совершенно по другому дело обстоит с литий–ионными (Li-ION) аккумуляторами, которые скорее любят находиться в заряженном состоянии. Их можно ставить на заряд в любой момент и держать в заряднике сколько угодно. Важно только, чтобы зарядник был предназначен для заряда именно Li-ION аккумуляторов. Такие зарядники после окончания заряда отключают ток заряда. Другая важная особенность Li-ION аккумуляторов, также как и герметичных свинцово–кислотных (SLA), – это необходимость их хранения только в заряженном состоянии.

Эффект памяти аккумулятора

В ходе эксплуатации никель-кадмиевых аккумуляторов была выявлена особенность, получившая название «эффект памяти». В дальнейшем эта особенность была выявлена и при использовании элементов питания других типов химии. Ее суть заключается в обратимой потери емкости, происходящей при определенных режимах перезарядки, в т. ч. при подзарядке частично разряженных элементов.

Аккумулятор будто запоминает, что в прошлый раз его емкость использовали не полностью, и в последующие разы отдает меньше энергии, т.е. его первоначальная емкость уменьшается. Это явление усиливается при систематической подзарядке аккумуляторов из частично заряженного состояния, особенно на 50% или более. У литий-ионных аккумуляторов эффект памяти есть, но не выражен, что выгодно отличает их от никель-кадмиевых и никель-металлгидридных элементов.

Физическое объяснение явления

С физической точки зрения эффект памяти появляется так: при систематической подзарядке аккумулятора из частично заряженного состояния кристаллы активного вещества в его структуре становятся крупнее. В результате суммарная площадь активной рабочей поверхности аккума сокращается. Снижается и его способность запасать и отдавать энергию. Предельно доступный ток элемента уменьшается, внутреннее сопротивление растет, а емкость – падает.

Если крупные кристаллы сильно засорят пространство между электродами, интенсивный саморазряд сделает аккумулятор неработоспособным. С другой стороны, острые кристаллы могут повредить сепараторную перегородку, и аккумулятор станет непригодным для использования. Избежать таких последствий помогает четкое соблюдение правил эксплуатации аккумуляторов, в т. ч. придерживаться рекомендованных производителем токов заряда и разряда.

Профилактика эффекта памяти

На ранних стадиях это явление обратимо, а у Li-ion аккумуляторов эффект памяти практически не проявляется. Поэтому литиевые элементы питания можно и нужно заряжать, не дожидаясь падения уровня заряда до минимума. При использовании батарей с выраженным эффектом памяти рекомендуется перед каждой подзарядкой разряжать аккумулятор до минимума, рекомендованного производителем. Но при этом нельзя допускать глубокого разряда элементов – ниже допустимого уровня.

Новые аккумуляторы с выраженным эффектом памяти рекомендуется перед началом использования подвергнуть тренировке. Она заключается в разрядке и зарядке элементов питания 2–3 раза подряд. Такая тренировка помогает довести емкость аккумулятора до максимально возможного значения. Чтобы убрать проявления эффекта памяти в процессе эксплуатации аккумулятора, нужно около 10 циклов такой тренировки. В дальнейшем для подзарядки рекомендуется использовать зарядные устройства с функцией доразряда. Они вначале разряжают аккумулятор, а затем заряжают его.

Какие аккумуляторы имеют эффект памяти

Это явление характерно для всех элементов питания, но в разной степени:

  1. у никель-кадмиевых – эффект памяти наиболее выражен;
  2. у никель-металлгидридных – проявляется в меньшей степени;
  3. у серебряно-цинковых – есть, но некритичен;
  4. у литий-ионных – ничтожно мал, поэтому Li-ion элементы питания часто называют аккумуляторами без эффекта памяти.

У литий-ионных элементов относительное отклонение в напряжении не превышает нескольких единиц на тысячу. Поэтому снижение первоначальной емкости в ходе их эксплуатации связано не с эффектом памяти, а с процессом естественной деградации. Ее ускоряют такие факторы как глубокий разряд и эксплуатация элементов при высоких температурах.

В производственных масштабах для замедления процесса деградации литиевых батарей используются электролитические добавки, электроды из стабильных кристаллических структур, стабильные электролиты. Ученые работают над созданием более совершенных аккумуляторов, но на сегодняшний день лидерами по всем характеристикам остаются литиевые элементы питания.

Эффект памяти у аккумуляторов что это

Эффект памяти аккумуляторной батареи — в настоящий момент под эффектом памяти понимается обратимая потеря ёмкости, имеющая место в некоторых типах электрических аккумуляторов при нарушении рекомендованного режима зарядки, в частности, при подзарядке не полностью разрядившегося аккумулятора.

Эффектом памяти называется явление уменьшения первоначальной емкости аккумулятора из-за нарушения потребителем рекомендованного производителем режима эксплуатации. Свое название данный эффект получил благодаря его практическому проявлению: аккумулятор словно запоминает факт, что в прошлый раз его разрядили не до конца, что его полная емкость не была востребована, и в следующие разы отдает уже меньше энергии, чем когда он был новым, чем теоретически позволила бы его номинальная емкость.

Данному эффекту подвержены некоторые популярные типы аккумуляторов: литий-ионные, никель-кадмиевые и никель-металл-гидридные. Хорошая новость заключается в том, что на ранней стадии эффект памяти является обратимым, а у литий-ионных и вовсе проявляется незначительно. Так что если вы столкнулись с эффектом памяти у аккумулятора, то не спешите расстраиваться.

Давайте же уясним для себя, какие именно действия человека способствуют развитию у аккумулятора эффекта памяти и как не допустить этого неприятного явления.

Если вы решаете подзарядить аккумулятор который еще почти полностью заряжен или разряжен не более чем на половину емкости, то именно это и ведет к формированию и разрастанию эффекта памяти.

Правильными действиями будут такие: аккумулятор всегда следует разряжать почти полностью, и только после этого ставить на зарядку, тогда эффект памяти не разовьется, и в ярко выраженной форме себя не проявит.

Конечно не стоит допускать и глубокого разряда ячеек. В идеале лучше разряжать до минимального, рекомендованного производителем в документации, напряжения, и только потом заряжать. Скажем, для литий-ионных аккумуляторов нижняя граница разряда лежит в районе 2,5 вольт.

Физическая причина возникновения эффекта памяти заключается в том, что если аккумулятор систематически не разряжается полностью, то кристаллы активного вещества внутри него становятся все крупнее. Следовательно общая площадь активной рабочей поверхности элемента уменьшается.

Очевидно, что в новом аккумуляторе площадь поверхности активного вещества значительно больше, потому что кристаллические структуры изначально по размеру меньше. Значит и химической энергии аккумулятор в таком состоянии сможет запасти и отдать больше.

А когда объем кристаллов увеличивается, общая активная поверхность уменьшается, следовательно максимально доступный ток становится меньше и меньше, внутреннее сопротивление растет, в общем — снижается емкость аккумулятора.

В худшем случае крупные кристаллы засорят пространство между катодом и анодом настолько, что в конце концов интенсивность саморазряда лишит аккумулятор работоспособности. Кроме того острые кристаллы способны повредить сепаратор и сделать элемент полностью непригодным.

Чтобы пресечь развитие эффекта памяти на корню, необходимо всегда соблюдать правильный режим эксплуатации аккумулятора. Нужно полностью разрядить аккумулятор, и только после этого начинать заряжать.

В процессе зарядки не нужно превышать рекомендованный ток заряда, а в процессе разряда — рекомендованный ток разряда. Новый аккумулятор всегда необходимо потренировать прежде чем начинать использовать его по назначению: разрядить полностью, а потом полностью зарядить, и так два-три раза.

Данная тренировка позволит довести емкость аккумулятора до максимума. Лучше вообще использовать зарядные устройства оснащенные функцией предварительного доразряда батареи. Такое устройство, когда аккумулятор в него установлен, сначала нагружает его для разряда до минимума, и только когда ток разряда сильно упал — начинает заряжать.

Ранее ЭлектроВести писали, что г руппа японских ученых создала уникальную технологию для создания самовосстанавливающихся аккумуляторов. Материал, из которого он изготовлен, обладает высокой износоустойчивостью и может самовосстанавливаться.

Аккумуляторы для мобильных устройств. Эффект памяти

Казалось бы, что может быть проще? Разрядился аккумулятор — подключай за-рядное устройство и заряжай до готовности. Однако в один прекрасный момент начинаешь замечать, что время работы полностью заряженного аккумулятора становится меньше, чем было ранее. В чем дело? Кто виноват и как объяснить данное явление?

Рассмотрим эту проблему и ее решение на примере аккумуляторов для сотового телефона. Впрочем, все нижеизложенное будет справедливо и для аккумуляторов радиостанций, радиотелефонов и радиоудлинителей, портативных компьютеров, цифровых фотоаппаратов и видеокамер, ручных инструментов.

Начнём с никель-кадмиевых (NiCd) и никель-металлгидридных (NiMH) аккумуляторов.

Всем известно, что по окончании заряда аккумулятора в обычном зарядном устройстве, загорается зеленый свет индикатора, указывающий на то, что аккумулятор полностью заряжен и готов к работе. Если аккумулятор заряжается в телефоне, то последний сообщит вам об этом присущим ему способом… В результате вы полагаете, что ваш аккумулятор заряжен, обладает полной емкостью и ему можно доверять на все 100%.

Но не верь глазам своим! «Зеленый свет» обычного зарядного устройства никоим образом не гарантирует достаточную (номинальную) емкость [1] и исправность аккумулятора. Все дело в том, что обычное зарядное устройство заряжает (наполняет) аккумулятор электрической энергией лишь до тех пор, пока есть «свободное место», в то время как количество закачанной в аккумулятор энергии никак не оценивается! Напрашивается простая аналогия со стаканом, которую мы подробно рассмотрели при обсуждении электрической емкости аккумулятора в статье [1]. Если в пустой стакан можно налить 200 мл воды, то в тот же стакан, но частично заполненный, например, песком или мелкими камешками — гораздо меньше. Продолжая эту аналогию, отметим, что каждый цикл заряда-разряда вносит в наш стакан-аккумулятор «посторонние примеси», уменьшая тем самым объем для хранения полезной энергии.

Естественно, возникает вопрос: почему аккумулятор в процессе эксплуатации постепенно становится неспособным принять во время заряда то количество энергии, на хранение которого он рассчитан?

Для примера на рис. 1 схематично изображены 5 различных состояний одного и того же NiCd аккумулятора.

Рис. 1. Емкость аккумулятора в зависимости от состояния его рабочего вещества.

Левый крайний аккумулятор обладает стопроцентной емкостью. Его рабочее вещество имеет однородную структуру из мельчайших частиц и максимальную площадь активной поверхности. Крайний правый — наихудший и имеет только 20% от номинальной емкости. Частицы его рабочего вещества укрупнились, и площадь активной поверхности значительно уменьшилась. Причина этого явления заключается в том, что в процессе эксплуатации с каждым новым циклом заряда-разряда рабочее вещество внутри NiCd и NiMH аккумуляторов постепенно изменяет свою структуру в сторону уменьшения площади активной поверхности, что приводит к уменьшению реальной емкости. Этот эффект, называемый также эффектом памяти, развивается вследствие заряда не полностью разряженных аккумуляторов на основе никеля и сильнее всего проявляется в никель-кадмиевых аккумуляторах. Никель-металлгидридные аккумуляторы подвержены эффекту памяти в меньшей степени. Рассмотрим изображенную а рис. 2 анодную пластину нового NiCd аккумулятора: кристаллические образования имеют малые размеры (около 1 мкм), и площадь их соприкосновения с электролитом максимальна.

Рис 2. Структура анодной пластины нового NiCd аккумулятора

В процессе эксплуатации потребители, как правило, не дожидаются полной разрядки аккумулятора перед очередным зарядом. Впрочем, это вполне естественно, особенно, когда отсутствует запасной аккумулятор. Однако в результате такой практики через 3-6 месяцев (в зависимости от частоты заряда, глубины разряда, условий эксплуатации, качества аккумулятора и фирмы-изготовителя) реальная емкость аккумулятора заметно уменьшается. Сокращается также и время заряда. Кроме того, возможно небольшое увеличение внутреннего сопротивления [1] аккумулятора. Словом, начинает проявляться эффект памяти. Состояние такого аккумулятора с укрупненными кристаллическими образованиями показано на рис.3.

Рис 3. Структура анодной пластины NiCd аккумулятора, не подвергавшегося периодической тренировке

Если и далее не принимать особых мер, то при дальнейшей эксплуатации увеличивающиеся кристаллические образования могут привести к разрушению сепаратора (своего рода перегородки, разделяющей анод и катод) и увеличению тока саморазряда [1]. В этом случае аккумулятор становится подобен худому ведру: воду носить можно, но недалеко.

Что же делать? Вспомнить старое доброе правило: легче эффект памяти предотвратить, чем потом устранить. А для предотвращения необходимо применять тренировку аккумуляторов, под которой понимаются периодические (3-4 раза) циклы заряда и последующего разряда до напряжения 1 вольт на элемент. Процесс этот проще всего выполнять на настольных зарядных устройствах, имеющих функцию разряда, или на специальных анализаторах типа Cadex C7000, C7200 [2,3]. Последние процесс тренировки автоматизируют и увеличивают емкость аккумулятора до максимально возможного уровня… Выполнение тренировочных циклов непосредственно в телефоне тоже возможно, но не так эффективно, поскольку телефон, как правило, успевает отключиться раньше, чем аккумулятор полностью разрядится. Да и времени для этого требуется значительно больше.

Теперь несколько слов о периодичности данного процесса. Рекомендации таковы: для никелькадмиевых аккумуляторов — один раз в месяц, для никель-металлгидридных — раз в два месяца. Если делать это чаще, то полезный эффект увеличивается незначительно, а износ аккумулятора значительно возрастает.

Всегда ли помогают тренировочные циклы заряда-разряда? Не всегда. С запущенными аккумуляторами дело обстоит сложнее, и помочь тут может только метод восстановления, основанный на глубоком (до 0,4 вольта на элемент) разряде аккумуляторов по специальному алгоритму. При таком разряде происходит дробление крупных кристаллических образований, в результате чего емкость аккумулятора восстанавливается. Структура рабочего вещества восстановленного аккумулятора показа-на на рис.4.

Рис 4. Структура анодной пластины восстановленного NiCd аккумулятора

Однако следует отметить, что некоторые из восстановленных аккумуляторов могут иметь высокий саморазряд [1] вследствие повреждения кристаллическими образованиями материала сепаратора. По большей части это присуще старым аккумуляторам.

А теперь подведем итоги.

  1. Эффект памяти свойственен только аккумуляторам на основе никеля, причем сильнее всего он проявляется в никель-кадмиевых аккумуляторах. Существуют мнение, что в никель-металлгидридных аккумуляторах этот эффект просто не успевает значительно проявиться из-за меньшего срока их службы. В то же время ряд фирм, выпускающих NiMH аккумуляторы, заявляет, что их аккумуляторы свободны от этого эффекта. Например, фирма GP Batteries International Limited в сопроводительной этикетке на некоторые типы своих аккумуляторов указывает следующие параметры: количество циклов разряда-заряда — 1000, отсутствие эффекта памяти и необходимости разряда аккумулятора перед зарядом. Словом, параметры более чем привлекательны.
  2. Часто на эффект памяти списывают повреждения аккумулятора, вызванные неправильной эксплуатацией: использованием неисправного или «неродного» зарядного устройства, длительным пребыванием в зарядном устройстве, переохлаждением или перегревом аккумулятора, да и просто браком по вине изготовителя или поставщика.
  3. Для предупреждения эффекта памяти при отсутствии специальных зарядных устройств можно порекомендовать заряд после как можно более полного разряда аккумулятора в телефоне.

И в заключение несколько слов о литий-ионных (Li-ion) аккумуляторах.

С ними дело обстоит с точностью до наоборот. Они не подвержены эффекту памяти. Более того, Li-ion аккумуляторы предпочитают заряженное состояние незаряженному. Их можно ставить на заряд в любой момент и держать в зарядном устройстве сколько угодно. Зарядные устройства для Li-ion аккумуляторов после окончания заряда автоматически отключаются, поскольку Li-ion аккумуляторы нельзя перезаряжать. Важно только, чтобы это устройство было предназначено для заряда Li-ion аккумуляторов именно этого производителя. В противном случае аккумулятор может быть либо недозаряжен, либо испорчен. Другая важная особенность Li-ion аккумуляторов — это необходимость их хранения только в заряженном состоянии.

При написании статьи использовались материалы, любезно предоставленные г-ном Isidor Buchmann, основателем и главой канадской компании Cadex Electronics Inc. [3], а также компанией Landata, г. Москва [4].

Более подробная информация на русском языке об аккумуляторах для мобильной техники связи, компьютеров и других портативных приборов, а также советы по эксплуатации и обслуживанию приведены в [5].

Продолжение следует

Ссылки:

  1. Аккумуляторы для мобильных устройств — устройство и основные параметры
  2. Аккумуляторы для мобильных устройств — методы заряда.
  3. http://www.cadex.com — Cadex Electronics Inc., Vancouver, BC [British Columbia], Canada — разработчик и производитель зарядных устройств, анализаторов и систем обслуживания аккумуляторов.
  4. http://www.landata.ru/kip/catalog.htm (вход через раздел «Обслуживание аккумуляторов») — компания LANDATA — авторизованный и эксклюзивный дистрибьютор канадской фирмы Cadex Electronics Inc. в России.
  5. http://www.mari-el.ru/marmobile/battery/ — Аккумуляторы для мобильных устройств и портативных компьютеров. Анализаторы аккумуляторов.
  6. http://www.gpbatteries.com.hk/cgi-bin/cellular/ — фирма GP Batteries International Limited.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *